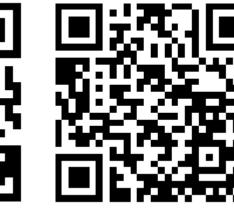


Struct2D: A Perception-Guided Framework for Spatial Reasoning in MLLMs

Fangrui Zhu^{1*}, Hanhui Wang^{1, 3*}, Yiming Xie¹, Jing Gu⁴, Tianye Ding¹, Jianwei Yang², Huaizu Jiang¹ ¹Northeastern University, ²Microsoft Research, ³University of Southern California, ⁴University of California, Santa Cruz



Motivation

Can MLLMs reason about 3D space using only structured 2D representations derived from perception?

Contributions

- * We propose a perception-guided 2D prompting strategy, **Struct2D** Prompting, and conduct a detailed zero-shot analysis that reveals MLLM's ability to perform 3D spatial reasoning from structured 2D input alone.
- * We introduce Struct2D-Set, a large-scale instructional tuning dataset with automatically generated, fine-grained QA pairs covering eight spatial reasoning categories grounded in 3D scenes.
- * We fine-tune an open-source MLLM (Qwen2.5-VL) on our Struct2D-Set to achieve competitive performance across several validating the real-world spatial reasoning benchmarks, applicability of our framework.

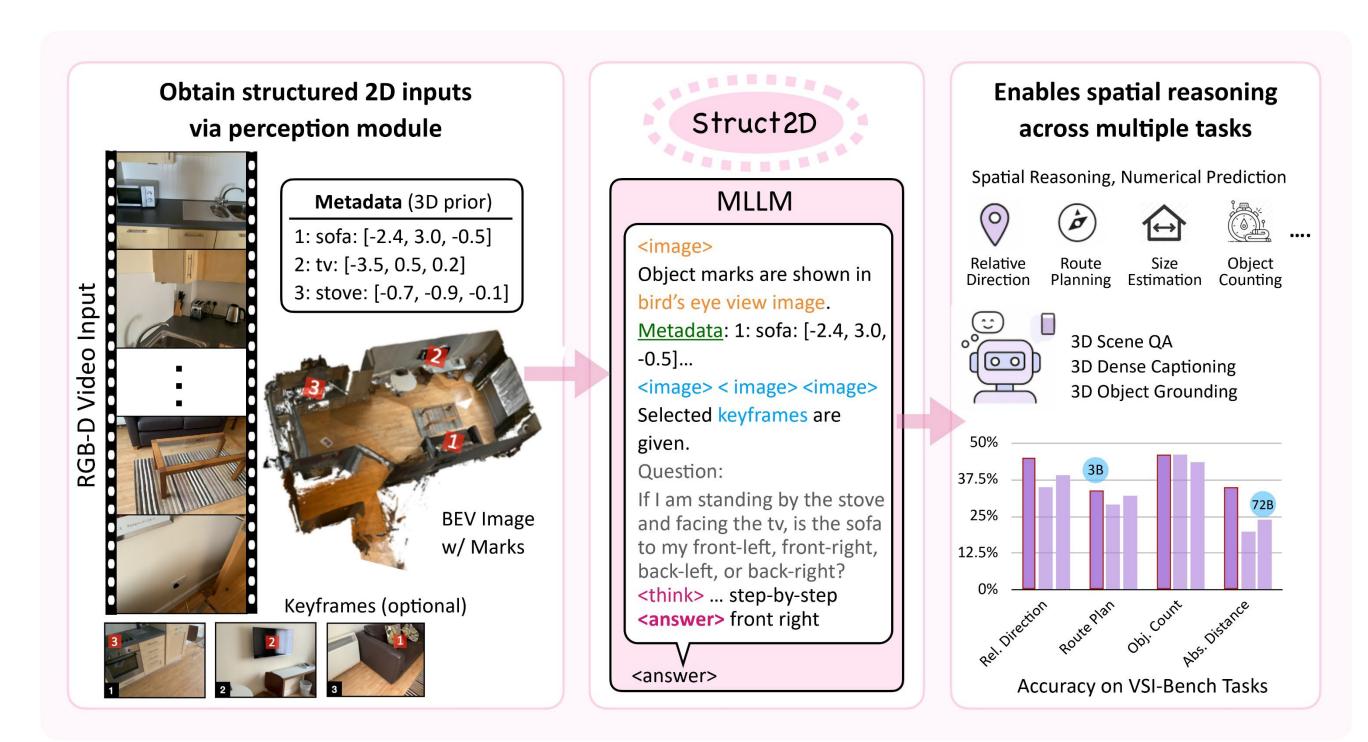


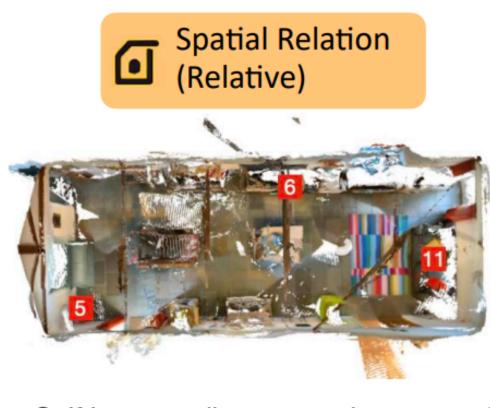
Figure 1. Overview of our **Struct2D** framework for enabling spatial reasoning in multimodal large language models (MLLMs).

> Struct2D Prompting

- **Struct2D** transforms RGB-D videos into structured 2D inputs a bird's eye view (BEV) image with filtered object marks, object-centric metadata, and optionally object-focused keyframes (as shown in Fig. 1).
- ❖ We evaluate Struct2D on a VSI-Bench subset, comparing with prior 2D and video-based prompting. With *noisy* object detections, Struct2D outperforms both baselines across all major spatial reasoning tasks while using only one input image. (Tab. 1)
- * When provided with *ground-truth* object detections, Struct2D achieves near-human performance across most spatial reasoning tasks. (Tab. 1)

Struct2D-Set Construction

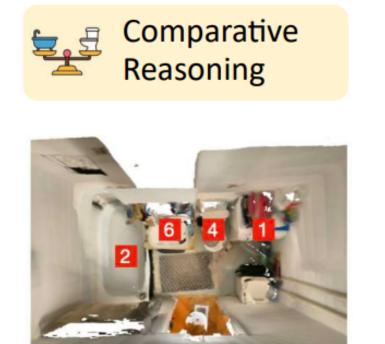
- ❖ Built from ScanNet, ScanNet++, and ARKitScenes datasets.
- * Consists of 200K QA pairs across 8 spatial reasoning tasks.



Q: If I am standing next to the oven and facing the sofa, is the chair in front-left front-right, back-left, or back-right?

Short answer: back-right.

Augmented answer: The chair is located in the back-right position relative to the oven (ID 6) and the sofa (ID 11), as it is situated towards the lower right quadrant when facing north along the positive y-axis.



Q: Which of the following objects (toilet, bathtub, sink) is closest to the washer when measuring from their nearest points?

Short answer: Toilet.

Augmented answer: The closest object to the washer is the toilet, with coordinates [0.25, 1.27, -0.09], which is approximately 0.54 units away from the washer at [0.79, 1.35, -0.07], while the other objects are farther away.

Figure 2. QA examples of Struct2D-Set. For complex spatial reasoning tasks, QA pairs include both concise geometric answers and detailed reasoning explanations.

> Experiment Results Highlights

Table 1. Zero-shot evaluation of GPT-o3 on the VSI-Bench subset. We compare our Struct2D approach against baselines using 16 video frames and GPT4Scene's prompting solution. Struct2D achieves superior performance across most tasks.

Settings	# images	Cost (\$)	Avg.	Numerical Answer			Multiple-Choice Answer		
20011190				Obj. Count	Abs. Dist.	Room Size	Rel. Dist.	Rel. Dir.	Route Plan
VSI-Bench [81] GPT4Scene [62]	16 9	105.07 78.67	48.6 50.3	44.3 51.5	34.1 35.3	50.9 58.0	51.0 50.5	49.4 47.9	61.9 58.8
Ours (Noisy Objects) Ours (GT Objects)	1 1	27.25 27.25	56.1 83.8	52.8 93.8	38.4 90.6	48.9 47.4	60.0 96.5	60.1 94.4	76.2 80.1

Table 2. Performance comparison of various models on VSI-Bench. Our model fine-tuned with Struct2D-Set surpasses both the zero-shot Struct2D prompting and video-based tuning baseline.

Methods	Avg.		l Answer	Multiple-Choice Answer				
		Obj. Count	Abs. Dist.	Room Size	Obj. Size	Rel. Dist.	Rel. Dir.	Route Plan
Open-source Models								
InternVL2-2B [15]	30.3	21.8	24.9	35.0	22.0	33.8	44.2	30.5
InternVL2-8B [15]	33.9	23.1	28.7	39.8	48.2	36.7	30.7	29.9
LongVILA-8B [79]	21.1	29.1	9.1	0.0	16.7	29.6	30.7	32.5
VILA-1.5-8B [45]	29.5	17.4	21.8	18.8	50.3	32.1	34.8	31.0
LongVA-7B [90]	31.1	38.0	16.6	22.2	38.9	33.1	43.3	25.4
LLaVA-NeXT-Video-7B [95]	36.3	48.5	14.0	24.2	47.8	43.5	42.4	34.0
LLaVA-OneVision-0.5B [39]	31.2	46.1	28.4	28.3	15.4	28.9	36.9	34.5
LLaVA-OneVision-7B [39]	33.5	47.7	20.2	12.3	47.4	42.5	35.2	29.4
R1-Zero-VSI [44] (Qwen2-VL-7B)	32.1	39.4	25.0	43.2	25.8	32.6	30.9	27.8
R1-Zero-VSI [44] (Qwen2-VL-7B) + SFT	38.8	44.7	27.6	50.4	46.1	34.0	35.7	33.0
Ours								
Qwen2.5-VL-3B	25.6	27.0	22.0	25.6	32.5	17.5	28.9	25.6
Qwen2.5-VL-3B (Struct2D Prompting)	29.4	46.6	24.6	22.3	33.6	21.2	30.5	27.2
Qwen2.5-VL-3B (Baseline)	33.9	24.6	34.0	46.4	53.5	21.2	30.5	27.2
Qwen2.5-VL-3B (SFT)	41.9	46.0	34.7	42.6	56.4	35.1	44.9	33.5

Table 3 3D grounding results on ScanRefer

radic 3. 3D grounding results on Scalifferen.						
Methods	ScanRefer (val)					
1,1011045	Acc@0.25	Acc@0.50				
Task-Specific Model						
3DVG-Transformer [96]	47.6	34.7				
3DJCG [6]	49.6	37.3				
D3Net [11]	_	37.9				
M3DRef-CLIP [94]	51.9	44.7				
3D LLM Based Model						
Chat-Scene [30]	55.5	50.2				
Vision LLM Based Model						
Qwen2-VL-7B [71]	5.4	5.1				
Qwen2-VL-7B (GPT4Scene [62])	40.5	36.7				
Qwen2.5-VL-7B (Ours)	51.7	48.5				

Question: Paint a picture of the visual attributes of <OBJ11>, then explore how it relates spatially to other elements in the scene.

Ground Truth: This is a brown table. It is by the couch.

Ours: The table is to the right of the couch. The table is a brown rectangle.

Figure 3. 3D dense captioning output example.